
1
Vision for Calc Development - Keeping Calc Modular

Vision for Calc Development
Keeping Calc Modular

Kohei Yoshida

2
Vision for Calc Development - Keeping Calc Modular

Introduction

Who (what) I am
Born in Japan, lives in Raleigh, North Carolina.
Spare-time hacker turned full-time.
Hacking on OOo/LibO since 2004.
Software Engineer at Novell since 2007 (later SUSE), with
emphasis on LibreOffice Calc.
Blog: http://kohei.us/

3
Vision for Calc Development - Keeping Calc Modular

My motivation for LibreOffice

We all have different motivations, volunteer or paid.
Create a great spreadsheet application that I can be
proud of.

Cross-platform (at least Windows and Linux)
Native UI
Excellent performance
Stability
Ease of maintenance
Great support for various file formats.

LibreOffice Calc is certainly not there yet, but closest.

4
Vision for Calc Development - Keeping Calc Modular

Why make it modular

5
Vision for Calc Development - Keeping Calc Modular

sc

Calc today.... (1,000 feet view)

Document Tables Columns

Pivot Tables

Cells

Cell Formats

Shell

Filters

formula

Formula Compiler
Formula Interpreter

External Ref Cache

...

6
Vision for Calc Development - Keeping Calc Modular

All in one place - monolithic structure

Almost everything is in sc, with shared bits in other
modules.
Ugly sc/formula separation. Increased complexity.
Lots of in-house complex data structures deep within
Calc's core.

Cell instance storage
Cell format storage
Row / column attributes - visibility, height / width etc.
External reference cache
Pivot table cache

Very performance sensitive, yet not directly unit-tested.
Useful code only usable in LibreOffice. Shame.

7
Vision for Calc Development - Keeping Calc Modular

What to extract

8
Vision for Calc Development - Keeping Calc Modular

Extract complex data structures

Multi-dimensional data structure (mdds)
http://code.google.com/p/multidimalgorithm/

flat_segment_tree
segment_tree
rectangle_set
point_quad_tree
mixed_type_matrix
more to come...

http://code.google.com/p/multidimalgorithm/

9
Vision for Calc Development - Keeping Calc Modular

Extract complex data structures (cont'd)

Benefit
Hides complex storage logic from Calc's code.
No need to have LibreOffice build system. Ease of maintenance.
Easier performance tuning and unit-testing.
Usable outside LibreOffice.

Cost
Extra overhead when fixing bugs in mdds discovered from
LibreOffice code. (Solution: comprehensive unit-testing.)
Restricted push access. (Solution: added David and Caolan as
co-maintainers.)

10
Vision for Calc Development - Keeping Calc Modular

Extract complex data structures (cont'd)

Currently used
flat_segment_tree - Row visibility, row height, column width, and
other misc places.
mixed_type_matrix - Matrix class backend storage.

Future plans
Cell format storage to mdds. Maybe segment_tree will do?
2D grid structure for cell instance storage, pivot table cache as
well as external reference cache.
More candidate data structures lying around?

11
Vision for Calc Development - Keeping Calc Modular

Extract formula parser & interpreter

Ixion - threaded formula parser & interpreter
https://gitorious.org/ixion
Standalone C++ library usable outside LibreOffice. Easier
maintenance.
Not UNO component.
Multi-threaded interpreter.
Independent unit-testing framework.
Formula parser sharing done right.
Named after '28978 Ixion' the dwarf planet.
My personal pet project.

https://gitorious.org/ixion

12
Vision for Calc Development - Keeping Calc Modular

Ixion - What it does

Ixion provides
Formula string lexer & tokenizer (parser).
Formula token interpreter - multi-threaded.
Cell dependency tracker.
Class definitions for cells, address, tokens etc.
Reference name resolver (A1-style).
Interface to communicate with client code (read access to cell
storage, write access to cell flags and calc results).

Ixion will provide
Hook for client-defined cell functions (macro functions etc).
R1C1, ODF, ..., reference name resolvers.
Hook for handling external references.

13
Vision for Calc Development - Keeping Calc Modular

Ixion - How it works (formula string
tokenization)

SUM(A1:D5)+D6*10/(MyData +2)MAX()

SUM (A1:D5) + D6 * 10 / (MyData + 2)MAX ()

Names

ValuesOp, parens, sep

Break raw formula string into lexer tokens.

SUM (A1:D5) + D6 * 10 / (MyData + 2)MAX ()

Function Names

Range address Cell address

Named expression

Convert lexer tokens into formula tokens.

Pass raw formula string to Ixion.

Pass the lexer tokens to the
formula parser.

Pass the formula tokens back
to the client code.

Formula cell

The client code creates a formula cell
which stores the tokens.

Ixion library Client code

14
Vision for Calc Development - Keeping Calc Modular

Ixion - How it works (Initial full calculation)

Ixion library Client code

Register all formula cells to Ixion.
SUM (A1:D5) + D6 * 10 / (MyData + 2)MAX ()

Go through reference tokens in
formula cells to build dependency
graph.

Sort all formula cells by dependency.

Tell Ixion to calculate all formula
cells.

Calculate them in order using specified
number of threads.

15
Vision for Calc Development - Keeping Calc Modular

Ixion - How it works (Re-calculation)

Ixion library Client code

F9 E10

Modified cells

Register modified cells to Ixion.

Query Ixion to get all affected (dirty) cells;
cells that depends on modified cells
directly or indirectly.

SUM (A1:D5) + D6 * 10 / (MyData + 2)MAX ()

Go through references in modified
cells and update dependency graph.

E10

F9

I1

I2

H1

H2

H3

H4

Ixion returns all dirty cells.

Pass all dirty cells to Ixion.

E10 F9 I1 I2 H1 H2 H3 H4

Sort dirty cells by dependency and
calculate them in order.

16
Vision for Calc Development - Keeping Calc Modular

Ixion - Test framework

Pre-defined test cases
Uses ixion-parser executable.
Define, calculate, and re-calculate cells and check their results.
Simulates run-time editing of spreadsheet document.

Unit test - More fine-grained tests of internal code.
Reference name resolution.
String-to-double conversion.
Simple formula string tokenization.

DEMO

17
Vision for Calc Development - Keeping Calc Modular

Ixion - Pre-integration strategy for Calc

Ixion requires Change in Calc

String cells store IDs, not raw
strings.

* Application-wide shared strings.
* Merging of ScStringCell and
ScEditCell.

Formula cells store token IDs
and flags.

* Restructure ScFormulaCell, and
its neighboring code.
* Shared formula tokens.

Cells only store values. * Store other items (such as notes)
outside the cells.

Use calc chain to sort cells
and calculate them iteratively.

* Defer until Ixion integration.

Actual integration must be done on a branch, and will probably take
several minor release cycles. We must play it safe!

18
Vision for Calc Development - Keeping Calc Modular

Any other stuff to extract?

19
Vision for Calc Development - Keeping Calc Modular

Extract import filter framework.

Orcus - Spreadsheet document filter library.
https://gitorious.org/orcus
Standalone C++ library. Not UNO component.
Two Layers

Base raw stream parsers (C++ templates) - XML, CSS,
CSV.
Full import filters (binary) - ODS, XLSX, CSV.

Import filters only. Support for export filters planned.
Performance and maintainability.
Named after '90482 Orcus' the dwarf planet.
Personal pet project.

https://gitorious.org/orcus

20
Vision for Calc Development - Keeping Calc Modular

Orcus - Motivation

Unhappy with current ODS, XLSX filters.
Terrible performance. Unbelievably slow.
Over-engineered design. Odd mixture of internal and UNO APIs.
Usable only in LibreOffice.

Simple filter design for simple format.
Current CSV, HTML filters are unnecessarily complex. Hard to
maintain.
Not optimized for performance.
Usable only in LibreOffice.

21
Vision for Calc Development - Keeping Calc Modular

Orcus - What it does.

Orcus provides
Independent C++ spreadsheet filter framework.
API designed for optimized loading & parsing performance.
ODS, XLSX, CSV import filters.
C++ template-based XML, CSV, CSS parsers that can be
embedded in arbitrary code.

Orcus will (may?) provide
More raw parsers - HTML
More filters - Excel 2003 XML, HTML.
Export filter framework.
Any other parsers, filters as their needs come up.

22
Vision for Calc Development - Keeping Calc Modular

Orcus - Performance bits

No temporary string allocations; re-use stream buffer.
Tokenized XML parsing – avoid string comparisons.
C++ template based parser – allow compiler optimization.
API designed for performance.

No temporary strings (pass pointer to first char and length).
Push contents to the model while parsing (to avoid intermediate
storage).

23
Vision for Calc Development - Keeping Calc Modular

Orcus - Re-use stream buffer (XML)

Tokenized to numeric IDs.

Only memory address and size are stored - no allocation.
Valid while the XML buffer is in memory.

24
Vision for Calc Development - Keeping Calc Modular

Orcus – How to use it stand-alone.

$ orcus-ods path/to/document.ods

$ orcus-xlsx path/to/document.xlsx

$ orcus-csv path/to/document.csv

DEMO

25
Vision for Calc Development - Keeping Calc Modular

Orcus – How to use it as a library.

Orcus library Client code

/path/to/financial-data.ods

Pass the absolute file path of
the document to open.

Open the document, unpack the
package and start parsing.

Finished parsing the document.

Document model

Pass content fragments to the
document model while parsing.

In
te

rf
ac

e

26
Vision for Calc Development - Keeping Calc Modular

Orcus - preliminary results

Document with unformatted text cells
(ods) lots of text cells on 16 sheets (famous George Ou file)

40 sec (current filter as of 3.4)
12 sec (orcus-ods)

(xlsx) 300,000 rows / 2 columns on 1 sheet

1 min 40 sec (current filter as of 3.4)
3.2 sec (orcus-xlsx)

This is not final!

27
Vision for Calc Development - Keeping Calc Modular

Orcus - Integration strategy

Changes required prior to integration. Largely overlaps
with Ixion's integration requirements.

Shared strings across Calc core.
Optionally bypass the normal file import path in framework.
Re-work cell storage and formula handling. See Ixion's
integration strategy.
Implement the interfaces required by Orcus.
Perhaps lots of others I haven't thought of.

Likely go through several iterations.
Do it in a feature branch.
Push changes to master in steps.
Coordinate with Ixion integration.

28
Vision for Calc Development - Keeping Calc Modular

What to do short-term?

29
Vision for Calc Development - Keeping Calc Modular

Putting it all together...

Re-work Calc's sheet storage and offload more code to
mdds. Cell format storage and 2D cell storage.
Use the 2D cell storage container in Ixion and Orcus to
further improve performance of the container.
Implement shared strings.

rtl::OUString all the way in Calc core.
string cell and edit cell (rich text cell) merge.

Move stuff out of base cell (cell note etc).
Implement shared formula tokens.
... (lots-n-lots more stuff)
Integrate Ixion.
Integrate Orcus.

30
Vision for Calc Development - Keeping Calc Modular

If I still have time and energy....

31
Vision for Calc Development - Keeping Calc Modular

What other code can be extracted?

Data slicer engine for pivot table.
Immensely useful.
Performance sensitive.
Could use comprehensive unit-test framework.

Number formatter (number detection and formatting)
Very complex.
Useful on its own.
Could use comprehensive unit-test framework.

Chart engine.
Maybe useful, maybe not.
Abundance of data visualization software available.

32
Vision for Calc Development - Keeping Calc Modular

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos
and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Thanks for listening!

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy

	First Slide Example
	Default Example
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Final Slide Example

